

Ripple Control Function

What is Ripple Control

Ripple Control is a common form of grid management in many countries around the world. Its communication is based on superimposing a very high frequency signal onto the 50/60Hz mains power. The amplitude of the superimposed signal is usually around 5% of the nominal phase voltage, and the frequency of the ripple signal is usually ranging from 100 to 1600Hz. For instance, in France the frequency used by grid ripple control systems is 175 Hz. In Germany, the Renewable Energy Sources Act has particular requirement for PV installations to be remotely controlled to reduce output power in the event of grid overloading. It will usually have a ripple control receiving device installed on site to receive this control signal from the grid operator. In this way, the local grid system operator can send control signals remotely in order to limit the output of the solar PV systems.

SolaX provides 16 controllable options with 4 Digital Inputs in response to different grid dispatching requirements from the grid operator. The installers can easily set 16 different combinations of the active power and reactive power values in percentage.

How to connect DataHub to Ripple Control Receiver

Compatible inverters

Inverter Type	Inverter Series	Power Section
String Inverter	X3-MIC G2	4.0-15kW
String Inverter	X3-PRO G2	8.0-30kW
String Inverter	X3-Mega G2	40-60kW
String Inverter	X3-FORTH	80-150kW
Hybrid Inverter	X3-Hybrid G4	5.0-15kW

Data

Datahub1000

Ripple Control Receiver (RCR, provided by local grid operator)

Grid operator

SolaX Inverters

Connection Diagram

Port	Silk	Description
DI 1	1	Input Signal from K1 of RCR
	12V	
DI 2	2	Input Signal from K2 of RCR
	12V	
DI 3	3	Input Signal from K3 of RCR
	12V	
DI 4	4	Input Signal from K4 of RCR
	12V	

How to set up the power control functions

After connecting a laptop to the WiFi hotspot of DataHub, please login to the configuration page via <u>http://192.168.10.10</u> on browser. For more details please refer to the DataHub user manual.

① On the Display **D1, D2, D3, D4** of DI port, **green** dot means corresponding K1-K4 of RCR is closed.

D1 D2 D3 D4	Enable	Setting	
0000		Please Select	~
•000		K1 is closed ase Select	
0000		Please Select	
		Please Select	
0000		Please Select	

② On the **Enable** session, enable the DI option to activate the power control settings;

D1 D2 D3 D4	Enable
0000	\odot
0000	
0000	
0000	0
0000	\bigcirc

③ On the combobox of **Setting**, select the following power control functions:

- A. Inverter output active power control
- B. Inverter input active power control
- C. Inverter output reactive power control
- D. Remote shutdown

D1 D2 D3 D4	Enable	Setting	Active Power%(0~100)
0000	0	Please Select 🗸 🗸	0~100
0000		Please Select	0~100
0000		Inverter output active power control	0~100
0000	O	Inverter input active power control	0~100
0000	\bigcirc	Inverter output reactive power control	0~100
000	\bigcirc	Please Select	0~100
$\circ \bullet \bullet \circ$	\bigcirc	Please Select 🔗	0~100
$\bigcirc \bullet \bullet \bullet$	0	Please Select V	0~100

④ When **Inverter output active power control** is selected, input the active power value you need to set in percentage([0-100]%), and for **Inverter output reactive power control**, please input the Power Factor([80-100]%) and reactive power mode respectively. The reactive power mode includes **OverExcited** and **UnderExcited**;

Active Power%(0~100)	Power Factor%(80~100)
0~100	80~100
50	80~100
0~100	80~100
0~100	80~100
0~100	80~100

Active Power%(0~100)	Power Factor%(80~100)	Reactive Mode
0~100	80~100	Please Select V
0~100	90	Please Select
0~100	80~100	OverEvcited
0~100	80~100	UnderExcited
0~100	80~100	Please Select
0~100	80~100	Please Select V
0~100	80~100	Please Select V
0~100	80~100	Please Select V

(5) Submit and save the settings.

Note:

- Make sure to follow STEP1-5 strictly. In total there are 16 different combinations available for settings.
- **Green** dot means that the selected DI port 1-4 will be pulled-up to high level(12V), which matches the scenario that the co-responding K1-K4 on RCR are switched closed after receiving ripple control signal from the local grid operator.
- When the actual input pins of D1-D4 are not configured in the power control interface, the DataHub will control the connected inverters to run full power at normal condition.
- When switching from one DI combination to another one, the selection of the new DI combination will be executed. The old settings will be stopped.

